纳米粒子催化哌啶解阴离子水杨酸苯酯的动力学

 

相对抗衡离子(X)结合常数(=,其中和代表十六烷基三甲基溴化铵、CTABr、胶束结合常数(在非球形胶束中)、和Br-(在球形胶束中))为58,68,127,和125分别代表,和。15mMCTABr/[]纳米粒子催化的35°C下离子化水杨酸苯酯哌啶素分解的表观二级速率常数为0.417、0.488、0.926和0.891M-1 s-1for=Na1,Na21、Na2和Na22,分别。纳米粒子催化剂的几乎全部催化作用是由于非反应性反离子3-将反应性反离子3-从纳米粒子排出到本体水相的能力。


纳米粒子的研究现已成为化学研究的前沿领域。单层和双层表面活性剂聚集体是纳米颗粒,100多年来,它们以其特有的物理化学性质而闻名。在过去的近60年里,已经广泛研究了具有不同结构特征的表面活性剂聚集体/纳米颗粒对反应速率的影响。这些研究揭示了胶束/纳米颗粒催化反应速率的非常复杂的机制方面。自1887年Hofmeister首次报道盐对盐析蛋白的特定盐效应[7]以来,反离子盐对离子表面活性剂以及生物分子结构转变的影响已得到广泛研究。但这些特定盐效应的机制方面尚未完全了解。

中等疏水性抗衡离子的惰性盐,例如苯甲酸根和取代的苯甲酸根离子,对离子表面活性剂胶束生长的影响对于各种工业应用已经变得非常重要。然而,这种惰性盐对离子胶束生长的影响的机制细节几乎不存在。惰性反离子盐对离子表面活性剂纳米颗粒催化的半离子双分子反应(其中离子反应物也是反离子)的准一级速率常数()的影响已通过使用假相离子交换(PIE)进行了定量解释)模型。但PIE模型的使用主要涉及高度和中等亲水性反离子的反离子盐。然而,PIE模型的一些固有弱点也已被认识到。[MX]的增加(MX=3-和4-FBzNa,Bz-=C6H4)导致在恒定[CTABr]Tcmc下阴离子水杨酸苯酯(PSa-)的哌啶解非线性增加,其中[CTABr]T和cmc分别代表十六烷基三甲基溴化铵的总浓度和CTABr的临界胶束浓度。与[MX]的关系图的梯度幅度随着[MX][15]的增加而持续减小。的价值观  在其范围内几乎与[MX]保持独立,其中5mMCTABr的存在导致.因此,5mMCTABr/[MX]纳米颗粒充当催化剂,因为在没有CTABr的情况下,在研究涵盖的范围内,[MX]的值保持独立于[MX]。报告中没有强调和讨论CTABr/MX纳米颗粒超过10倍的催化作用。本研究研究了CTABr/MX/H2O纳米颗粒催化剂(MX=4-甲氧基和4-甲基水杨酸盐​​)对PSa-哌啶解的催化作用。

热门新闻:

药物与化工的双重角色
一种潜在的天然抗炎剂
美肤新宠,肌肤焕发的秘密力量
解锁局部麻醉与药物传输科技的新纪元
医药领域的应用探索
跨界应用中的多面手与革新力量
新兴行业的革新应用与魅力所在
肌肤舒缓的“神奇密钥”
解锁肌肤清爽与健康的秘密
天然香料的神奇功效
天然芬芳的魔法之源
穿越时空的疗愈力量——从医药宝藏到日化革新者的华..
肌肤新生的秘密武器
科学魅力与多元应用
一种多效的医药成分
家庭药箱中的疼痛缓解利器
水杨酸甲酯在环境科学中的应用探索
水杨酸甲酯的制备与性质研究
水杨酸甲酯的药理学及其应用
植物界的神奇化学品